CRYSTAL, EOS Validation and CAMEX-

CAMEX-relevant Future Field Missions

- CRYSTAL-TWP
- TC3 (Aura Validation)

Paradigm for Major NASA Field Missions

- Science Question Driven
- Satellite Validation Relevant
- Multi-Program Participation
- Interagency Participation/Application

Planned EOS Aura Validation Missions

The A-Train.....

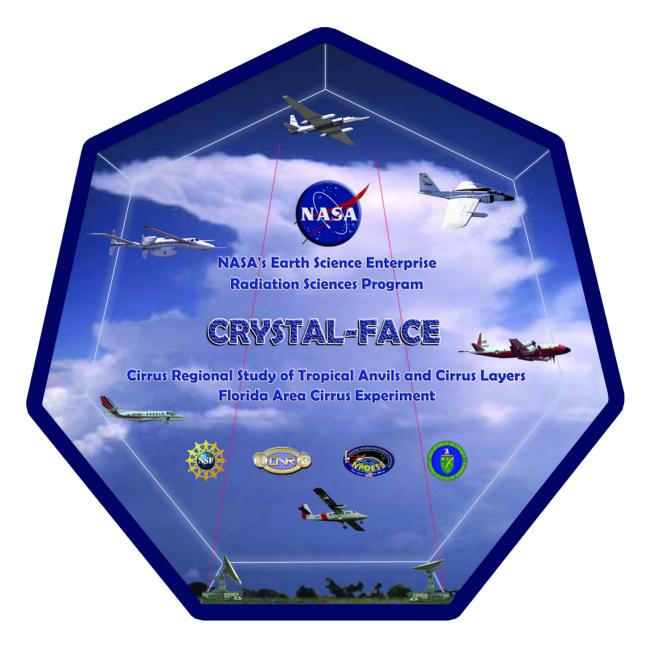
Aqua (5/02) - MODIS, CERES, AIRS, AMSR-E

Aura (1/04) - MLS, HIRDLS, OMI, TES

CloudSat (4/04)

CALIPSO (4/04)

Major Field Missions.....


INTEX-East (ER-2, DC-8, P3) summer 2004

TC3 (ER-2, WB-57, DC-8) winter 2005

CRYSTAL-TWP (ER-2, WB-57, DC-8) summer 2005

INTEX-West (ER-2, DC-8, P3) spring 2006

CRYSTAL-FACE Sponsors

- NASA Radiation Sciences Program (Don Anderson)
- NASA Upper Atmosphere Research Program (Mike Kurylo)
- NASA EOS Validation Program (Michael King)
- NASA Atmospheric Chemistry Modeling and Analysis Program (Phil DeCola)
- National Science Foundation (National Center for Atmospheric Research)
- Department of Energy Atmospheric Radiation Program (ARM)
- Office of Naval Research (CIRPAS)
- Integrated Program Office (NPOES)
- Cooperating Agency: NOAA National Weather Service

CRYSTAL and NASA ESE Science Questions

- a) How are global precipitation, evaporation and cycling of water changing? (Variability)
- b) What trends in atmospheric constituents and solar radiation are driving global climate? (Forcing)
- c) What are the effects of clouds and surface hydrologic processes on Earth's climate? (Response)

CRYSTAL-FACE Science Goals

• Improve understanding/models of cirrus anvil properties in relationship to the properties and strength of deep convection.

Does stronger convection imply a larger longer-lived anvil? ...more anvil ice mass? ...larger ice crystals? ...more complex ice crystals?

- => Link **convective mass flux** to anvil properties.
- Improve understanding/models of the factors that control lifetime and area coverage of cirrus anvils and tropical cirrus layers.

What is role of cirrus cloud processes? (radiation, microphysics, dynamics)

=> Study physical properties and processes of persisting anvils and cirrus over lifetime. Characterize dependence on environmental controls.

How well are cloud-generating/dissipating processes represented in cloud system models?in global models? How should they be represented?

CRYSTAL-FACE Science Goals

• Improve understanding of how deep convection affects tropical upper tropospheric humidity (key climate-radiation variable).

How are TTL cirrus layers and humidity related to cb-generated cirrus?

- => Measure upper tropospheric humidity and other tracers of convection.
- Improve understanding of processes that control lower stratospheric humidity (key factor in stratospheric chemistry*).

What processes control the transport of mass and water from the troposphere to the stratosphere?

- => Measure water vapor accurately along with temperature, water isotopes, cloud microphysics, and tracers near the tropical tropopause.
- * Lower stratospheric water vapor is important factor in stratospheric chemistry. Nature and strength of troposphere-stratosphere exchange is not well understood in tropics (competing theories).

CRYSTAL-FACE Science Goals

Validate remote-sensing measurements

=> Obtain diverse remote sensing and in-situ information about properties of tropical cirrus, and relate these data to concurrent measurements from ground-based, airborne, and satellite remote sensors.

Terra (MODIS, MISR, CERES), Aqua (MODIS, AIRS, CERES)

TRMM (Precipitation radar)

Up/down-looking cloud/aerosol lidar (CALIPSO-like)

Up/down-looking millimeter cloud radar (CLOUDSAT-like)

GOES, POES, etc....

CRYSTAL-FACE Observing Platforms

Satellites: Terra, Aqua, TRMM, GOES, POES

Aircraft and Science Team at Key West Naval Air Station

NASA ER-2 Remote sensing, satellite simulator, *in-situ*

Proteus Remote sensing, satellite simulator

NASA WB-57 *In-situ* microphysics and chemistry

UND Citation *In-situ* cloud microphysics

CIRPAS Twin Otter *In-situ* aerosol, chemistry, microphysics

Navy P3 NCAR ELDORA Doppler cloud radar

Eastern Site Remote sensing, radiation

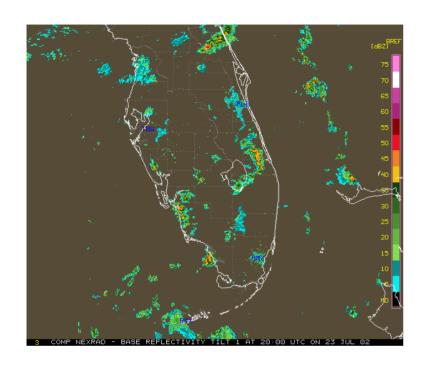
Western site Remote sensing, radiation, soundings

NPOL site NPOL Doppler radar, a/c ops control

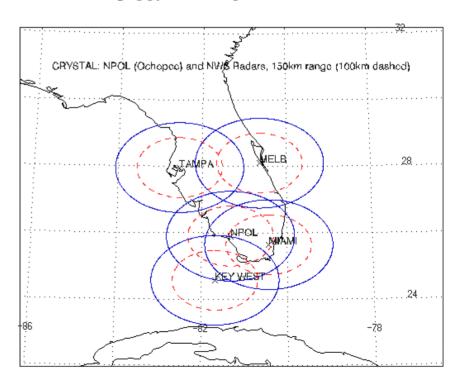
NWS sites NEXRAD (4), rawinsondes (3)

Ground Sites

Western Ground Site


NPOL

Eastern Ground Site

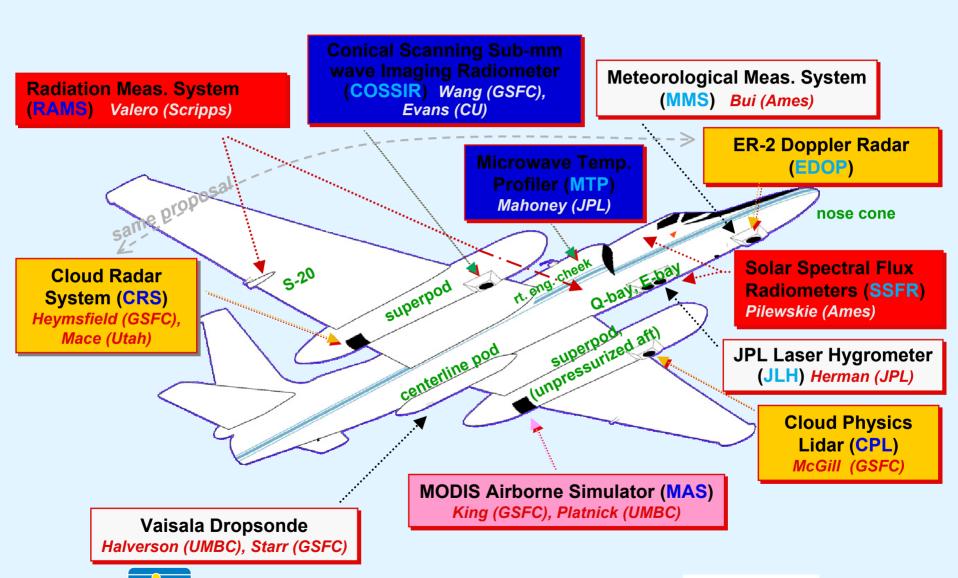

CRYSTAL-FACE Radar/Sonde Networks

Enhanced Sounding for CRM simulations

- NWS: MFL, TBW, EYW
- Mobile station
- Western Site Station (PARCL)
- ER-2 Dropsondes

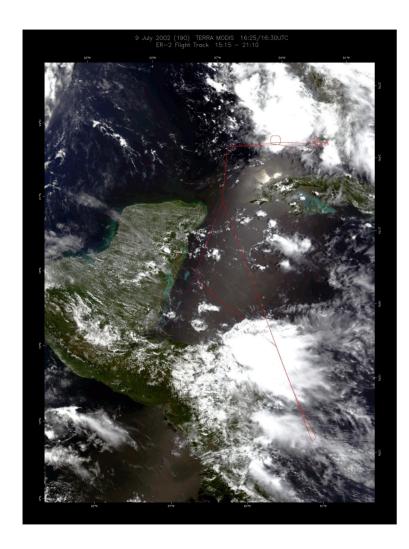
- Precipitation morphology observations (context for mass flux and CRM simulations).
- Enable internet access to 88-D data (CRAFT).
- •Polarimetrically-tuned rainmaps from 88-D data "piggy-backing" from NPOL

CRYSTAL-FACE People

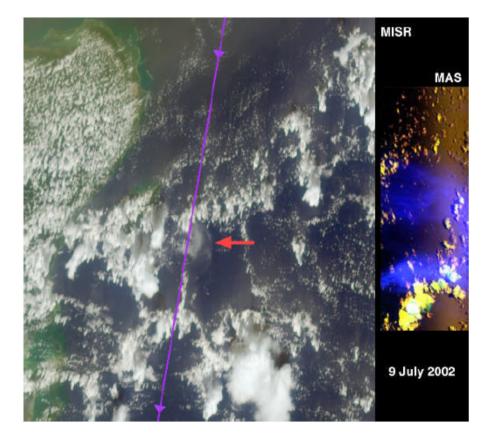

Mission Scientist - Eric Jensen

Co-Mission Scientists - Brian Toon, David Starr Platform Scientists - the room gets crowded.....

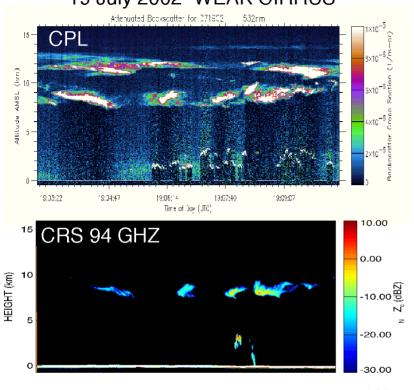
- 200+ scientists at Key West NAS
- Strong Theory and Forecast Teams in Field
 - Mesoscale/Cloud Systems Models (3)
 - Trajectory Models
 - Satellite and Radar Data and Analysis
 - CRYSTAL, NWS and Navy Forecasters

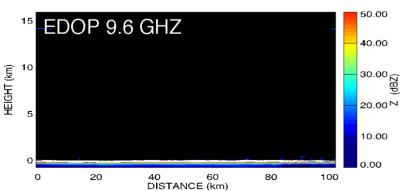

CRYSTAL-FACE ER-2 Instrument Payload

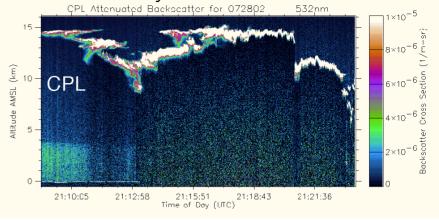
D. Starr/GSFC

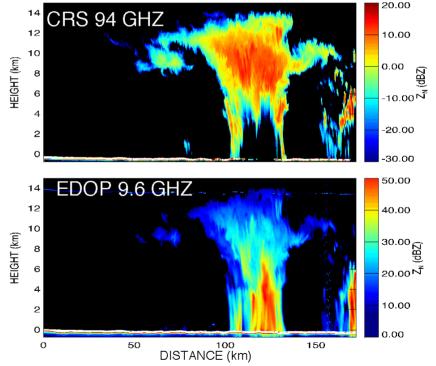

Terra MODIS

CRYSTAL-FACE: Deep Tropics Mission July 9, 2002

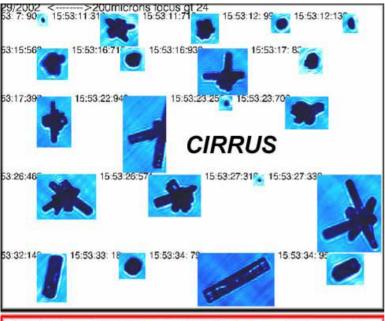

Terra MISR


MAS


CRYSTAL LIDAR-RADAR COMPARISON 19 July 2002 WEAK CIRRUS

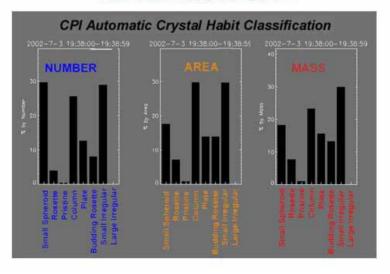


CRYSTAL LIDAR-RADAR COMPARISON 28 July 2002 CONVECTION

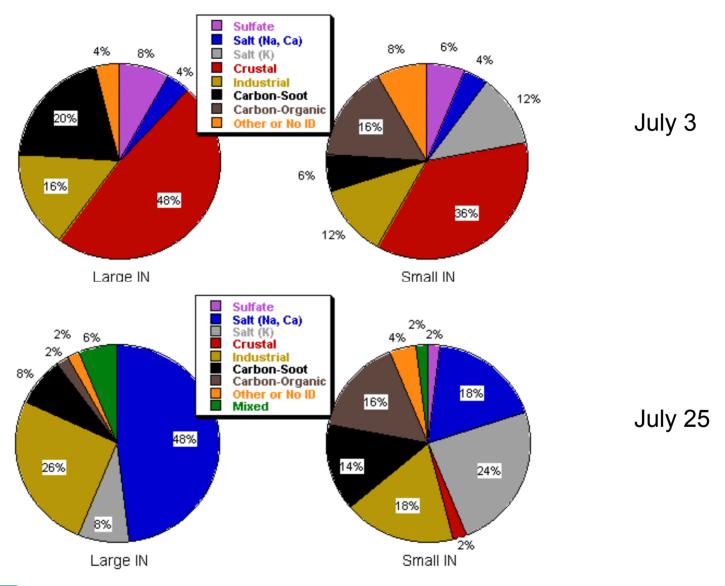

D. Starr/GSFC

NASA WB-57F CRYSTAL-FACE Payload

 Anderson 	Water Vapo	or, Total Water		Harvard U	
 Herman 		Water Vapor			JPL
 Avallone 	Total Water	and CO2	U Colorado	Boulder	
Wofsy		Carbon Dioxide			Harvard
 Rosenlof 	Ozone, Met	thane, Total H2O, P&T	NOAA/AL		
• Bui		Temperature and Winds	S	NASA Ame	es
 Mahoney 	Microwave	Temperature Profiler	JPL		
Fahey		Nitric Acid		NOAA/AL	
Ridley		NO and Noy			NCAR
 Webster 	CO, H2O is	otopes		JPL	
 Loewenste 	ein	CO and CH4			NASA Ames
Elkins		PAN, Methane, Hydrog	gen, etc	NOAA/CM	DL
Murphy		Aerosol and Ice Nuclei	Composition	NOAA/AL	
 Buseck 		Individual Aerosol Con	nposition	Arizona Sta	te U
 Baumgardner 		Aerosol Particle Size		Droplet Measurement Tech	
Wilson		Aerosol Size and Collect	etion		U Denver
 Garrett 		Scattering Properties of	Cirrus	U Utah	
 Lawson 		Cloud Particle Imager/C	Cloud Size	SPEC Inc	
 Heymsfiel 	d	Video Ice Particle Samp	oler		NCAR
 Valero 		Solar and Infrared Radi	ation	Scripps	

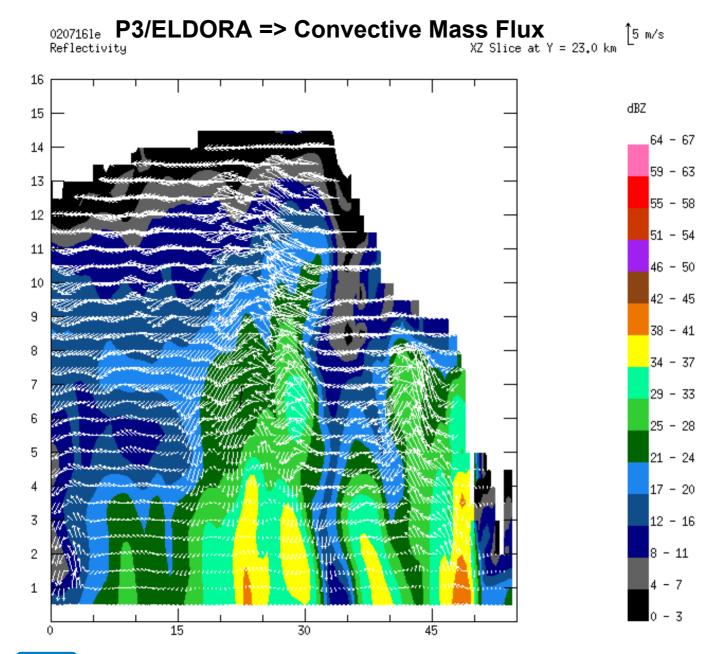


CIRRUS



ANVIL BLOW-OFF

CRYSTAL-FACE Composition of Ice Nuclei



D. Starr/GSFC

QuickTimeTM and a GIF decompressor are needed to see this picture.

CRYSTAL The Future ??

TC3/TWP Missions in winter/summer 2005 (Guam)

Tropical Composition and Climate Coupling (TC3) and CRYSTAL- Tropical West Pacific (TWP) Experiments

The A-Train.....

```
Aqua (5/02) - MODIS, CERES, AIRS, AMSR-E
```

```
Aura (1/04) - MLS, HIRDLS, OMI, TES
```

```
CLOUDSAT (4/04)
```

CALIPSO (4/04)

We got mosquitoes....

Yes, mosquitoes....

.....and Big Al....

